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ABSTRACT

Tags and other characteristic features that are consistent
among groups of animals or humans can be used to deter-
mine appropriate response strategies in societies. This usage
of tags can be extended to artificial environments, where
agents can significantly reduce cognitive effort by reusing
strategies for new interaction partners based on their tags.
Strategy selection mechanisms developed based on this idea
have successfully evolved stable cooperation in games such
as the Prisoner’s Dilemma game but relies upon payoff shar-
ing and matching methods that limit the applicability of the
tag framework. Our goal is to develop a general classifica-
tion and behavior selection system based on the tag frame-
work. We propose and evaluate alternative tag matching
and adaptation schemes for selecting appropriate behavior
against any member of a stable society. The mechanisms
allow agents to evolve not only the appropriate strategy-
specific agent groups, but more importantly the optimal tag
for the environment. We show that these mechanisms will
allow for robust selection of optimal strategies within a sta-
ble environment and analyze the various environments where
this approach is effective.

1. INTRODUCTION
Agents in open multiagent environments must be able to

quickly adapt to new environments and use past, relevant
experience to react to new scenarios and choose effective in-
teraction policies with new partners. As in human societies,
agents in artificial societies also come with external features
that may, in a large majority of cases, suggest social groups
they belong to and hence give at least a coarse-level view of
their behavioral characteristics, biases and preferences.
For example, businesses often employ the idea of signalling;

that is, to make explicit decisions about the business’s ap-
pearance (such as the area it is located in, the exterior design
of the building, etc) it conveys signals to potential clients
about the reliability of the business.
Similarly, consider the scenario of interviewers and inter-

viewees in a hiring situation. In that case, the groups of in-
terviewers and interviewees are two interacting populations.

Interviewees are looking for jobs relevant to them: this is
done by interacting with interviewers and changing them-
selves while discriminating the pool of available interviewers
to those they would prefer to interact with. Interviewers are
more static in their decision making – since they have no
incentive to appear more attractive to their audience, their
preferences and appearance do not change over time. We
would like to simulate this circumstance and similar ones.

External features or tags of an agent can then be utilized
to both reduce cognitive effort in the strategy selection and
to provide a means to classify agent experience. While these
generalizations are not always socially optimal, as in social
stereotypes, they do provide a key tool for cognition that
allows a pragmatic management of the complexity of life [8].

Prior tag mechanisms have shown that cooperation is pos-
sible within the tags framework [10]. These mechanisms
however are not particularly suited for open environments.
Limitations on agent interactions and payoff distribution
may incite cooperation, however they restrict the conditions
under which agents can learn within the environment. An-
other shortcoming is that although these mechanisms allow
choosing of which partners in the environment to interact
with, it does not enable learning appropriate strategies to
interact with each and every member. In this paper, we are
interested in developing tag-based mechanisms that allow
newcomers to a society to adapt both their tag (external
appearance) and their matching strategy (who they want to
cooperate/defect against). Therefore we will analyze the in-
teractions of agents in open environment where a group of
new agents may migrate to a population of stable agents.
The goal of these newcomers, then will be to quickly learn
the habitual preferences and behavioral biases of the existing
population so that they are able to effectively and gainfully
interact with them.

To facilitate speedy learning, we assume two basic features
in the environment: (a) the stable population has some la-
tent behavioral biases that are at least indirectly reflected
in their external, observable features1, and (b) members of
the newly arriving group can independently interact with
the members of the stable population and that their relative
success or the reward from this interaction are shared with
other newcomers, who can then choose to alter their inter-
action strategies to align with the more successful of their
peers.

1Note that we do not require the knowledge of that map-
ping or, for that matter, any guidance to the nature of the
function(s) mapping from external appearances to intrinsic
behavioral traits.



In this paper, we adopt a binary interaction outcome sce-
nario, where in each interaction, each party can choose to
cooperate (C) or not (C) with the opponent. We assume
that each agent, both in the incoming and existing popu-
lations, have an external, visible feature set or tag and an
internal hidden matching mechanism that determine whom
that agent will cooperate with. Matching an agent implies
cooperating with that agent, while not matching implies not
cooperating. We investigate various scenarios of varying
payoffs for matching and not matching, corresponding to
different real world situations.
We evaluate several combinations of evolutionary and clas-

sical learning approaches to see if the incoming population
can successfully develop effective interaction policies from
repeated interactions. Learning of such policies is key for a
successful assimilation of the incoming population into the
stable one. Our results show varying degree of success with
different representation scheme and dictated by the correla-
tion between the external features and the intrinsic behav-
ioral traits of the stable population.
In our study we also tried to create scenarios where learn-

ing agents are not best served by pure strategies like “always
cooperate” or “always defect”, but are better served by con-
ditional policies like “cooperate with cooperators and defect
against defectors”. We propose a method to adjust the pay-
off matrix of the game such that the evolving agents are in-
centivized to play conditionally depending on its opponent’s
expected behavior rather than committing to defecting or
cooperating unilaterally.

2. RELATED WORKS
Previous work on tag-based mechanisms of game-playing

and cooperation have focused on developing evolutionary
schemes to learn optimal actions based on tag relationships
to strategies [12, 10, 11]. The proposed mechanisms are
generally developed to be played in iterated stage games of
Prisoner’s Dilemma or the Anti-Cooperation game.
Such mechanisms invoke population models of learning,

in which agents may develop identities via mimicry [10].
Matlock and Sen observe that while some games, such as
the Anti-cooperation game, may discourage mimicry, other
games like the Prisoner’s Dilemma empower the tagging
mechanism, and mimicry becomes a prominent strategy.
Such models provide effective mechanisms which consis-

tently produce social rationality and/or Nash equilibria [6].
The Principle of Social Rationality, as proposed by Hogg and
Jennings [7], is: If a socially rational agent can perform an
action whose joint benefit is greater than its joint loss, then
it may select that action. The goal of Hales’ evolutionary
model is to produce emergent dynamics which result in a
system of socially rational agents. We are interested in pro-
ducing socially rational agents, but stubborn agents in our
system that refuse to cooperate force the learning agents in
the system to not cooperate with others as well. As a result,
the problem is one of classifying stubborn agents based on
their outward attributes and cooperating with those that
maximizes the number of cooperations, followed by non-
cooperations.
Previous work on tag mechanisms also focuses on changing

tag representation over the matching representation [5]. Our
model is interested only in tags composed of bit strings, and
we suggest four novel improvements to the matching mech-
anism that increase performance in the cooperation game.

Stereotyping in trust systems shares some very similar
qualities with tag-based mechanisms, and similar techniques
have been used to construct such stereotypes [2, 13]. These
approaches use a machine learning classifier to separate agents
into groups, with the intent of making generalizations about
groups to determine the trustworthiness of agents inside such
groups. Similar applications of classification in multi-agent
frameworks focus on subjects such as text classification [4].
We are interested in developing similar classification schemes
to map visible feature attributes into strategies.

Unlike the aforementioned papers, our approach uses an
evolutionary scheme to generate a classifier. While previ-
ous papers have gathered information based on single in-
teractions, we are interested in population-level interactions
which is more realistic in social situations where interac-
tions are numerous and short. The evolutionary mechanism
we introduce includes sharing of tag information among the
evolving population as well as strategic information. Finally,
our agents play a different simultaneous game in which co-
operation from both players is encouraged, and otherwise
the preferred action is to not cooperate. This game models
many realistic situations, in which agents are motivated to
cooperate with others but because of preconceived negative
biases, there are those who will not cooperate with certain
groups. In this case, players are motivated to not attempt
cooperation with these agents as well, as some sort of neg-
ative retribution. In some ways, players in this game are
learning to be socially rational, but in contrast to previous
works there exists a group of irrational agents (known as
“static agents”) which act irrationally in all respects.

3. MATCHING METHODS
In the current framework, a population of agents is divided

into two groups: a static population and an evolving popu-
lation. Each agent has two properties; a tag and a match-
ing mechanism. Agents in the static population have fixed
strategies and tags. The goal of the evolving population is
to collaborate to develop a combination of tags and strate-
gies that maximizes their payoffs when interacting with all
the members of the static population. Each interaction be-
tween a newcomer and a member of the static population
corresponds to a pre-defined stage game, the Coordination
game.

The matching methods we present now considers the only
“visible” features of their opponents, their tags, and do not
have any other information, e.g., their individual identity,
past performance, etc. In other words, incoming agents can
see their opponents’ tags, and their own tag and matching
mechanism, while making the decision to cooperate or not.
This way instead of recognizing each agent with their iden-
tity, incoming agents create matching mechanisms based on
stereotypes, and base their strategy on their matching mech-
anism.

The use of tags in a population of agents has been shown
to induce coordination [12]. Tags used in this research are
binary strings of length TL, representing the observable bi-
nary attributes of an agent. Matching mechanisms are the
methods used by the agents to decide either they will coop-
erate or not with an agent a with associated tag Ta. In this
study four different matching mechanisms are used:

Ternary Matching Strings: Agents use a ternary match-
ing string MS composed of values in {0, 1, *}, where ∗



corresponds to a don’t care, and of length equal to the
length of the agent tags. For an agent a with a ternary
matching string to cooperate with agent b,

MMS(a, b) : ∀i∈{1,2,...,TS}MSa(i) = Tb(i)∨MSa(i) = *

Where MSa(i) corresponds to value of the ith position
of a’s matching string and Tb(i) is the value of the ith
position of the tag of agent b. So, a match occurs if, for
every position, either the matching string contains the
same value as the other agent’s tag or contains a don’t
care symbol. Such a matching approach makes sense
when agents decide on which tag positions or features
are important, and judge others based on whether they
meet the criteria on these salient features.

Hamming Distance: Agents decide to cooperate based on
the similarity of their own tags with that of others. In
Hamming matches, the total number of bit differences
between the tags of two agents a and b must be at least
Hmin but no more than Hmax. In other words, agents
should prefer those similar to them, but prefer at least
some difference:

MH(a, b) : Hmin ≤ |{i ∈ Z : TSa(i) 6= TSb(i)}| ≤ Hmax

So matching is based only on the tags of the two in-
teracting agents.

Decision Tree: In this matching mechanism, an agent uses
a decision tree which is used to classify the opponent’s
tag to decide whether to cooperate or not. Nodes in
the tree correspond to tests on tag features and results
in one of two outcomes. Decision trees can compute
arbitrary functions on boolean features and hence the
range of behaviors that can be represented is greater
than that can be represented with the matching mech-
anisms using Hamming distance or ternary strings.

Intelligent Classifiers While the above three matching mech-
anisms are used by the static population, for the new
agents only we also incorporated learning: a new agent
interacts with each static agent and the tags and coop-
erating decisions made by those agents are used as the
training set for the learning algorithm. This approach
uses the history of previous interactions for an agent
to determine which combination of attributes leads to
cooperation or defection. Unlike other approaches, the
classifier method of matching solely uses the interac-
tion history to decide future actions and newcomers
do not have to share information with other newcom-
ers. For learning the matching function from train-
ing data, we used a Random Tree classifier[1], though
any other supervised classification algorithms includ-
ing neural networks, Bayesian classifiers, Support Vec-
tor Machines, etc. can also be used.

We have performed a series of experiments with different
population configurations using different matching mecha-
nisms. In a given configuration, all static agents use the
same matching mechanism, which can be different from the
matching mechanism used by all members of the incoming
population. All but the Intelligent Classifiers match-
ing method has been used with the static population mem-
bers (this is because the learning classifier will change the ex-
isting population from a static to a dynamic one). Similarly,

Mi : 0 1 * 1
Mi′ : 0 1 0 1
Tj : 0 1 1 1

Figure 1: An example of a ternary matching string
and tag interaction. Player i will cooperate with j,
but i′ does not cooperate with j due to a mismatch
in values at index 3.

Ti : 0 1 0 1
Tj : 1 0 1 0
Tk : 1 1 0 1

Figure 2: The Hamming distance between Ti and Tj

is 4, and between Ti and Tk is 1. For cooperation,
agents need to be similar, but have some differences.

all but the Hamming Distance and Decision tree match-
ing method has been used with the incoming population
members. This is because, as stated, the Hamming distance
function is a fixed function and does not contain a learning
opportunity (though there is a possibility for learning Hmin

and Hmax, which we have not explored in this paper).

4. EVOLVING THE NEW POPULATION
The members of the incoming population need to adapt

their behavior and external appearance, their tags, so as
to realize maximum utility from interaction with all the
members of the static population. We use an evolution-
ary framework, where each newcomer interacts with each
existing agent. Their individual experiences can be used,
if desired to, to both adapt their personal strategies from
their “local knowledge”or personal interaction histories with
the static population, e.g., that done when the Intelli-

gent Matching method is used2, and also shared with other
newcomers to identify the most preferred tag for the new-
comers, by using an evolutionary algorithm that utilizes this
“global knowledge”. As this is an evolutionary mechanism,
the agents do not keep track of all the interactions they have
with each static agent. The only information they have is
the utility they got in the end of a generation. They use
this information to keep their behavior or adopt some other
agent’s behavior.

In the following we present the evolutionary process used
to learn the tags and strategies of the incoming population.

For every generation, the population is able to reproduce
asexually; new agents will be selected and have a possibility
of mutating every generation, but there is no sexual recom-
bination of tags or match data. The fitness of an agent in
the evolving population is calculated by the cumulative pay-
off of games played against the entire static population. At
each generation, tournament selection is used to decide the
new population. Every agent in the existing population will
participate in selection; these agents are given the choice
of either mimicking the identity of a random agent or pre-
serving their own. The final decision is made by selecting
the agent with the highest fitness value of the two with the
probability of PSelection. This means the better agent will
be selected with PSelection and the worse one still has the

2When the evolving population of newcomers use the learn-
ing classifiers on their personal interaction history, we have
a hybrid evolutionary machine learner.



1 for g generations do

2 for each agent, AE , in evolving population,PE do

3 for each agent, AS , in static population, PS do

4 if AE .matches(AS .tag) then

5 if AScooperates then

6 AE gets PCC ;
7 else

8 AE gets P
CC

;

9 else

10 if ASdoesnotcooperate then

11 AE gets P
CC

;

12 else

13 AE gets P
CC

;

14 calculate the fitness, average payoff, of AE ;

15 Using tournament selection generate new PE ;
16 for each agent, AE , in PE do

17 Mutate Tag and Match with probabilityµ;

Algorithm 1: Evolutionary Algorithm

chance to be selected with the probability of 1− PSelection.
After selection, every agent will be subject to a mutation
stage given a parameter mutation probability µ.
The mutation operation used in the evolutionary process

is dependent on the type of matching mechanism used in
the experiment. The Hamming distance method is not used
in the evolutionary population, so no mutation operator is
used for that matching mechanism. For ternary Matching
String (MS) mechanism the mutation function traverses each
bit of the MS and replaces it with one of 0,1 or * with the
probability of µ. Mutation is not applied to the matching
function generated by the intelligent classifier.

4.1 Payoff Matrix Adjustments
In most of the cooperation problems, pure strategies, which

are very easy for the agents to come up with, create a good
enough utilities so the agents become unwilling to move from
that strategy and search for better strategies. Dreżewski
shows that these strategies would cause the agents to get
stuck at a local maximum instead of searching for a global
one [3]. In most real life scenarios, people rarely choose to
use pure strategies (interact with or ignore everybody), and
instead adopt selective strategies.
Research on Commodity Theory has shown that the scarcity

of some item is inversely proportional to its value [9]. Since
cooperation and non-cooperation are some commodity, the
same principle may impact the development of stereotypes.
For example, an interviewee may attempt interviews with
more interviewers if hiring is low; however, when everyone
is hiring, the interviewee would desire to not interview with
those that may not need them. To that end, the payoff
matrix is adjusted to take into account the cost of heteroge-
nous outcomes (where the learning and static player choose
different strategies) given the likelihood of cooperation for
a static population: if the static population is likely to co-
operate, then the cost of cooperating with non-cooperators
increases; conversely, if the static population is not likely to
cooperate, the cost of cooperating with non-cooperators in-
creases. By calculating an ’unstabilized point’, we want to
achieve a society which will be willing to move away from

pure strategies. That way the agents will be more likely to
find the mixed strategies, which will achieve better utilities.

As mentioned above, each interaction between a newcomer
and a current member of the static population corresponds
to a stage game. The payoff matrix of the game incentivizes
the evolving strategies and matching mechanisms of the in-
coming population. We now outline our design of the pay-
off matrix so that incentivizes the emergence of conditional
matching strategies, that respond to the matching behav-
ior of the opponents, rather than “always cooperate” or “al-
ways defect” matching behavior. For any random tag and a
matching mechanism, the probability of matching is affected
by the matching mechanism used and the parameters of the
system. ∆ signifies the difference in payoff of pure cooper-
ation (that is, given a static population, the learning agent
chooses to cooperate in all cases) and pure non-cooperation.
We then estimate the value of ∆ for a given system of static
agents:

E [∆] = k(PCC − PCC) + (1− k)(PCC − PCC) (1)

where k is the probability that a member of a static popu-
lation will cooperate given a random tag. k is affected by
the matching mechanism used by a static agent: the tag
matching mechanism, for example, has a very low k since
one string yields very few cooperations across the set of pos-
sible tags.

There are three possible configurations of ∆ which will
radically effect the dynamics of the evolutionary learning
system:

1. When ∆ >> 0, (is significantly greater than 0) a ran-
dom learning population will be rewarded for the few
agents they cooperate with; as such, learning popula-
tions will converge towards a total cooperate strategy;

2. When ∆ << 0 (is significantly less than 0) the learning
population is rewarded for not cooperating, and will
instead converge towards total non-cooperation;

3. The special case of ∆ ≈ 0 represents when the payoff
matrix does not incentivize the learning population to-
wards either total cooperation or defection; then any
naive mixed strategy that ignores tags would yield ap-
proximately the same payoff; agents then may be led
to correctly classify the static population.

For an increase in payoff, learning agents must cooperate
with cooperative static agents and correspondingly not co-
operate with non-cooperative agents. Since the trivial solu-
tions for ∆ >> 0 and ∆ << 0 may be easily developed, we
further examine the case of ∆ = 0, and the payoff matrix
in figure 4.1 is the solution to equation 1, by contriving the
payoff values for cooperation and non-cooperation.

Finally, we calculate k for every matching mechanism used
for the static population. Consider kTS , the probability of
matching a random tag given a random ternary matching
string:

kTS = P
TL
m , (2)

where Pm is the probability of matching one bit. For a
ternary string this value is 2

3
since, the possible match values

{0, 1, ∗} are equally probable and for any bit in {0, 1} will
match one item in {0, 1} and will definitely match *.



C C

C 4 α

C PCC − 1−k
k

(PCC − α) 2

Table 1: Payoff matrix for the evolving population
(row player) against the static agent population (col-
umn player) for α = 1 and probability k.

The corresponding probability for decision tree matching,
kDT is

kDT = 0.5. (3)

Consider the decision tree D in the set of all possible deci-
sion trees for a given domain of tags. Then, a complement
decision tree D′ may be constructed by switching the bi-
nary classification of every leaf node on the tree. So D and
D′ have opposite classifications, and this transformation is
unique for D and D′. Since every decision tree has such a
complement, any decision tree that may cooperate with a
given tag will have another tree that does not cooperate.
Therefore, the probability of cooperation with a randomly
generated decision tree for any tag is 0.5.
Finally, we calculate the probability of matching for Ham-

ming distance, kHD:

kHD =

Hmax
∑

i=Hmin

P
TL−i
m ∗ (1− Pm)i ∗

(

TL

i

)

(4)

When the agents in the static population uses Hamming
distance as their matching mechanism, the probability of a
random generated tag matching their mechanism can be cal-
culated as in Equation 4. Pm is the probability of matching
a bit as it was in the definition of kTS . Hmin is the mini-
mum Hamming Distance at which the agent will cooperate,
and Hmax is the corresponding maximum.

5. EXPERIMENTAL RESULTS
We now present results of our experiments with different

population configurations, using different combinations of
matching mechanisms.
Unless otherwise specified, simulations are run until con-

vergence (identical tags and matching strings in the learning
population) or until the system exceeds 200 generations (in
which the system likely never converges). Our learning pop-
ulation has 100 agents, to be tested against a population of
1000 static agents. The mutation parameter µ = 0.001; the
probability of mutation is independent between tags and
matches. The tag length of all agents is 8, and for Ham-
ming matches the parameters have the value Hmin = 2 and
Hmax = 4. The selection parameter is set to PSelection = 0.8
in the setup.
Among all static populations, the degree of cooperation

on average was affected by the matching mechanism. Levels
of cooperation were dictated by the degree of discrimination
in matching mechanisms for static populations (as in, higher
percentages of cooperation were determined by the average
number of tags that would be accepted by the matching
mechanisms of the static population). Conversely, learn-
ing populations required intelligent discrimination to achieve
mutual outcomes (CCand CC); the evolutionary technique
performed well in discriminatory techniques.
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Ternary String:Decision Tree
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Figure 3: Ratio of mutual outcomes to non-mutual
outcomes over time averaged for 20 trials. (in for-
mat Learning:Static matching mechanism)

Results shown in Table 3 represents maximal cooperation
or non-cooperation that may be induced from the static pop-
ulation. Data is averaged over the same set static popula-
tions used in Table 2. The maximal percentage of cooper-
ation is determined by finding the tag configuration which
yields the highest number of cooperations for a given static
population. A similar metric is used for finding the maximal
percentage of non-cooperation.

Intelligent classifiers performed best in the total rate of
mutual outcomes against all static population types. The
intelligent classifier produces near-optimal matching since it
is trained against the entire population of static agents. The
effectiveness of agent cooperation, then, is measured in rela-
tion to their performance against the intelligent population.

Hamming distance was the least discriminatory of all match-
ing mechanisms used in the static population. Unlike other
matching mechanisms, it is the tag that determines the be-
havior of an agent using the Hamming distance mechanism;
as such, agents with identical tags would share identical be-
haviors. As such, the intelligent classifier will always have
total mutual outcomes as it has all the information necessary
to predict the behavior of the static population.

Ternary string-based matching was the most discrimina-
tory; on average, a learning agent could only cooperate with
5% of the static population. This pattern was accounted for
in the adjusted payoff matrix. So the learning populations
were unwilling to cooperate, and only did cooperate with
a small number of static agents. Ternary strings are more
discriminatory, so by their nature learning ternary strings
will have high rates of non-cooperation.

Of the three static matching mechanisms, the decision tree
has by far the most complex hidden strategy. Nonetheless,
both learning populations were able to induce high levels
of mutual outcomes. Ternary strings and the classifier has
equal levels of mutual noncooperation, but the classifier pop-
ulation outperformed in mutual cooperation. The ternary
string’s innate discriminatory ability likely contributed to
its high level of noncooperation; the fact that it could evolve
equal levels of mutual cooperation reveals the benefit of ap-
plying the evolutionary framework to this problem.



Learning Match Static Match Fitness
Mutual

Outcomes
CC CC CC CC

Ternary Ternary 1.46 93.35 00.43 92.91 02.23 04.42
Classifier Ternary 1.48 97.14 00.66 96.48 02.33 00.53
Ternary Hamming 2.85 61.62 37.60 24.03 25.42 12.96
Classifier Hamming 3.28 100.00 64.13 35.87 00.00 00.00
Ternary Decision 2.49 53.35 25.55 27.80 26.04 20.61
Classifier Decision 2.74 69.99 42.61 27.38 09.69 20.32

Table 2: Percentage of outcomes for the row player (evolving players) and the column player (static players).
Averaged over 20 trials. Average rate of mutual outcomes for pure strategy agents with best possible tag
included for comparison.

5.1 Learning rates
We compare the rates at which incoming populations learn

their tags and matching mechanisms in figure 3. Incom-
ing populations using ternary strings and classifier match-
ing mechanisms converged fairly quickly against all agent
types. Classifier agents converge quickly due to the small
search space; since the only evolving aspect is the tag string
with 256 possible values, it quickly finds the best possible
configuration given the classification.
Ternary string agents face a greater challenge with a larger

search space. The time for convergence is remarkably larger
for ternary strings learning against Hamming distance. The
challenge that ternary strings face is the high likelihood of
structural noncooperation; for mechanisms like Hamming
distance, given our parameters, agents will cooperate with
approximately 60% probability. In response, the payoff ma-
trix is adjusted to punish more for cooperation with non-
cooperators; ternary strings are able to construct an effective
”model agent” that yields high degrees of cooperation (since
static agents act according to their tags) at the cost of ig-
noring many potential static cooperators. Interestingly, the
ternary learning populations found a balance between coop-
eration and noncooperation; the longer convergence time is
understandable given the rigid structure of ternary strings.

Static Match Pure C Pure C

Ternary 5.56 97.57
Hamming 64.34 43.85
Decision 52.24 52.55

Table 3: Percentage of outcomes for pure strategies
of cooperation and non-cooperation, calculated on a
trial-by-trial basis for each trial in Table 2.

6. CONCLUDING REMARKS
Stereotyping is a core mechanism for identification and

learning. Extracting hidden strategies from agents using
judgments of external features is essential to functioning in a
society. We present a set of automotive processes simulating
the assimilation of agents into new cultures and synthesis of
personal stereotyping mechanisms using a hybrid evolution-
ary and classifier approach. A set of matching mechanisms,
which may classify agents into “cooperate” and “no cooper-
ate” categories, are introduced to reproduce stereotype de-
velopment. Agents cooperate in an evolutionary framework
to learn inside an established society of agents.

Simulations consist of two populations: the evolving pop-
ulation and unchanging static population. Agents between
both populations play a modified version of the Coordina-
tion game; the goal is for both players to play identical, or
mutual strategies. Classifier agents using the Random tree
classifier as their matching mechanism tend to perform the
best when faced against such a problem;

In our current game the Classifier matching mechanism,
although contrived, performs best out of the three learning
schemes tested. Further work may involve changing the cur-
rent game to punish classification schemes – which are not
realistic and are non-cooperative responses to the stereotyp-
ing problem. For example, adding a cost to mutual cooper-
ation which varies by agent would add the consideration of
agent quality, instead of only quantity.

While the evolutionary mechanism in our results shows
a remarkable ability to adapt to a wide variety of popula-
tions, modifications to the process may benefit the system
further. Currently, the learning process is simultaneous over
tag and match mechanism evolution: Separating these pro-
cesses may produce mutual outcomes to a greater extent
at the end of the simulation by allowing more convergence.
Similarly, the inclusion of more evolutionary matching mech-
anisms, such as a decision tree, may expand the express-
ability of the evolutionary algorithm to address particularly
complex static matching schemes.
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